Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this study, Si/β‐Ga2O3solar‐blind photodetectors (PDs) have been demonstrated via micro‐transfer printing of a single crystalline Si pillar on β‐Ga2O3. Unlike other previous approaches for β‐Ga2O3based heterojunction, this new single crystalline p‐n Si/β‐Ga2O3heterojunction has a particle‐free heterointerface and does not show any sign of internal strain after the heterogeneous integration that is confirmed by Raman spectroscopy. As a result, PDs exhibit extremely high photoresponsivity (748 A W−1), quantum efficiency (3.67 × 105%), and UV/visible rejection ratio (≈105) under UV light illumination. This result is believed to provide a viable route for the realization of high‐performance solar‐blind photodetection systems, which form some of the most indispensable and important components in high‐performance next‐generation security, biomedical, and environmental monitoring systems. Also, the unique heterogeneous integration method allows us to realize a variety of β‐Ga2O3based heterostructures that can further enhance the optical performances of β‐Ga2O3based PDs.more » « less
-
Abstract A free‐standing β‐Ga2O3, also called β‐Ga2O3nanomembrane (NM), is an important next‐generation wide bandgap semiconductor that can be used for myriad high‐performance future flexible electronics. However, details of structure‐property relationships of β‐Ga2O3NM under strain conditions have not yet investigated. In this paper, the electrical properties of β‐Ga2O3NM under different uniaxial strain conditions using various surface analysis methods are systematically investigated and layer‐delamination and fractures are revealed. The electrical characterization shows that the presence of nanometer‐sized gaps between fractured pieces in β‐Ga2O3NM causes a severe property degradation due to higher resistance and uneven charge distribution in β‐Ga2O3NM which is also confirmed by the multiphysics simulation. Interestingly, the degraded performance in β‐Ga2O3NM is substantially recovered by introducing excessive OH‐bonds in fractured β‐Ga2O3NM via the water vapor treatment. The X‐ray photoelectron spectroscopy study reveals that a formation of OH‐bonds by the water vapor treatment chemically connects nano‐gaps. Thus, the treated β‐Ga2O3samples exhibit reliable and stable recovered electrical properties up to ≈90% of their initial values. Therefore, this result offers a viable route for utilizing β‐Ga2O3NMs as a next‐generation material for a myriad of high‐performance flexible electronics and optoelectronic applications.more » « less
-
Abstract Here, high power flexible Schottky barrier diodes (SBDs) are demonstrated on a plastic substrate using single crystalline β‐Ga2O3nanomembranes (NMs). In order to realize flexible high power β‐Ga2O3SBDs, sub‐micron thick freestanding β‐Ga2O3NMs are created from a bulk β‐Ga2O3substrate and transfer‐printed onto the plastic substrate via a microtransfer printing method. It is revealed that the material property of β‐Ga2O3NMs such as crystal structure, electron affinity, and bandgap remains unchanged compared with its bulk properties. Flexible β‐Ga2O3SBDs exhibit the record high critical breakdown field strength (Ec) of 1.2 MV cm−1in the flat condition and 1.07 MV cm−1ofEcunder the bending condition. Overall, flexible β‐Ga2O3SBDs offer great promise for future flexible energy convergence systems and are expected to provide a much larger and more versatile platform to address a broader range of high‐performance flexible applications.more » « less
An official website of the United States government
